\begin{tabbing} $\forall$${\it es}$:ES, $x$:Id, $e$:\{$e$:E$\mid$ @loc($e$)($x$:$\mathbb{B}$)\} . \\[0ex](($x$ when $e$) = tt $\in$ $\mathbb{B}$) \\[0ex]$\Rightarrow$ (($x$ initially@loc($e$) = ff $\in$ $\mathbb{B}$) $\vee$ ($\exists$${\it e'}$:E. (${\it e'}$ $\leq$loc $e$ \& ($x$ when ${\it e'}$) = ff $\in$ $\mathbb{B}$))) \\[0ex]$\Rightarrow$ ($\exists$\=${\it e'}$:E\+ \\[0ex]((${\it e'}$ $<$loc $e$) \\[0ex]\& ($x$ when ${\it e'}$) = ff $\in$ $\mathbb{B}$ \\[0ex]\& ($x$ after ${\it e'}$) = tt $\in$ $\mathbb{B}$ \\[0ex]\& $\forall$${\it e''}$$\in$(${\it e'}$,$e$].($x$ when ${\it e''}$) = tt $\in$ $\mathbb{B}$ \\[0ex]\& $\forall$${\it e''}$$\in$[${\it e'}$,$e$).($x$ after ${\it e''}$) = tt $\in$ $\mathbb{B}$)) \- \end{tabbing}